Socioeconomic Impacts of Typhoon Maki ng Landfall on the Korean Peninsula

Baek-Jo KIM, Suk-Hee AHN, Ji-Hoon JUNG National Institute of Meteorological Research Korea Meteorological Administration, Republic of Korea

One of the most devastating disasters in the world

(Images from New York Times)

If typhoons are gone away ...

✓ Typhoon could give us wide range of benefits.

Contents

- Characteristics of KP-landfalling TCs
- Typhoon: Damage vs Benefit
- Objective

Socioeconomic Value Analysis

- Water Resource
- Air Quality
- Harmful Algal Bloom(HAB)

Why should we care about landfalling TCs

Rapidly change its structure and Intensity :

- ← Topographic force
- ← Intensity change
- Precipitation increase (Wind structure)
- Increase in loss of life and property damage

Characteristics: Typhoon Frequency

The frequency was relatively high in the early 1960s and 2000s and now i t is increasing from the late 1980s.

Characteristics: Typhoon Track

- Mean regression track of KP-landfall TC tends to move southeastward every decade.
- In recent decades, a number of TC track showed directly moving to Northw ard without landfall to China.

Characteristics: Recurving Location

Interpolation as 2.5 by 2.5 of latitude and longitude

 In recent decades, the southward shift of 10-year mean recurving location is clear, which is associated with the track pattern of KP-landfalling TCs.

Characteristics: Extreme Weather

< The 10 highest winds by typhoon >

< The 10 heaviest rainfall by typhoon >

Rank	Station (AVVS)	Date	Max.WS (m/s)	Typhoon	Rank	Station (AVVS)	Date	MaxPiep. (mm)	Typhoon
1	Jeju(184)	2003.09.12	60.0	MAEMI	1	Gangneung(105)	2002.08.31	870.5	RUSA
2	Heuksando(169)	2000.08.31	58.3	PRAPIROON	2	Jangheung(260)	1981.09.02	547.4	AGNES
3	Gosan(185)	2002.08.31	56.7	RUSA	3	Pohang(138)	1998.09.30	516.4	YANNI
4	Ulleungdo(115)	2007.09.17	52.4	NARI	4	Busan(159)	1991.08.23	439.0	GLADYS
5	Ulleungdo(115)	1992.09.25	51.0	TED	5	Jeju(184)	2007.09.16	420.0	NARI
6	Ulljin(130)	1986.08.28	49.0	VERA	6	Namhae(295)	2003.09.12	410.0	MAEMI
7	Ulleungdo(115)	2005.09.07	47.3	NABI	7	Haenam(261)	1972.08.20	407.5	BETTY
8	Jeju(184)	1959.09.17	46.9	SARAH	8	Samcheok(214)	1971.08.05	390.8	OLME
9	Tongyoung(162)	1995.07.23	46.6	FAYE	9	Dongdoocheon(098)	1999.08.01	377.5	OLGA
10	Ulleungdo(115)	2004.08.19	46.1	MEGI	10	Boryeong(235)	1995.08.25	361.5	JANIS
	(Source: KMA)							e: KMA)	

 Most maximum winds and heaviest rainfall were usually observed in the southern coast of Korea before and in the moment of typhoon landfall.

Typhoon: Damage(1)

< Statistics summary (2001 – 2010) >

< Total damages from weather-related disasters (2001 – 2010) >

Month	Number of typhoons (%)	Number of typhoons affecting Korea	
Jan.	3 (1.3)	-	
Feb.	1 (0.4)	-	
Mar.	2 (0.9)	-	
Apr.	5 (2.2)	-	St
May.	14 (6.1)	1	6
Jun.	17 (7.4)	2	Sı st
Jul.	31 (13.5)	7	79
Aug.	55 (23.9)	9	
Sep.	44 (19.1)	9	
Oct.	29 (12.6)	-	
Nov.	20 (8.7)	-	V
Dec.	9 (3.9)	-	~
Total	230	28	

10 years: 10 billion U.S. dollars

Typhoon: Damage(2)

[Source: National Emergency Agency]

 Typhoon RUSA was the worst case resulting in largest damage corresponding to 0.72% of GDP in 2002.

✓ The average of total damage was 0.1% of GDP.

Typhoon: Benefit

東亞日報

| 과학세상 |

음 들어 다섯 번째로 우리나라에 영향을 준 제16호 태풍 산바가 지나갔다. 지난 30년간 영향을 준 태풍이 연평균 3.1개이니, 평년보 다 많은 건 분명하지만 드문 일은 아니다. 한 해 5개의 태풍이 우리나라에 영향을 준 건 2004년 이후 8년 만이지만 이런 해는 30년 동 안 9번이나 됐다. 그러나 태풍의 발생빈도 및 영향음 주는 태풍이 줄어드는 추세를 생각해 보면 이상기후처럼 느껴직 수 있음 것이다 음해 태풍으로 인한 피해 규모는 계속 커지 고 있다. 15호 태풍 볼라벤과 14초 대표 데비 갈치(5kg 상품) 가격 추이(단위: 원)

연도별 10월 평균

8215392

2010 서울시농수산문

8218625

의 피해가 제대로 집계되지도 { 가 닥쳐 어려움을 더했다. 세 기 두 상륙하기 5일 전부터 알려져 가 사전대비를 했다. 엄청난 태신 서 어느 정도 재산 피해는 어쩔 이명 피해를 최소하하 것은 처마 보통 태풍 하나는 제2차 세계 가사키에 투하된 원자폭탄 1민 갖고 있다. 흔히 전 세계 기후 주변을 초토화했던 1883년 인데

계절은 어김없이 변하고 있다. 여름철 무더 위와 집중호우로 우리를 힘들게 했던 북태평 양 고기압의 세력도 약화되며 동남쪽으로 물 러나고 있다. 그 대신 이동성 고기압이 주기 적으로 우리나라에 영향을 주고 있다. 이 고 기압은 요즘처럼 맑고 쾌청한 가을 날씨를 가 태풍은 올해 말까지 8~10개는 더 발생할 것

이다. 그러나 우리나라에 영향을 줄 가능성은 매우 희박하다. 북태평양 고기압이 점차 수축 하고 있고, 남해상으로 분상하더라도 동쪽으 로 전향할 가능성이 높아지고 있기 때문이다. 10월에도 태풍이 내습한 사례는 있다. 1904 녀부터 2011년까지 8개의 태풍이 10월에 우리 나리에 영향을 줬다 10년에 하 버콤도 아 되 니 통계적으로도 가능성이 작다. 올해는 8.9 9101 015k01 97801 58301

연도별 1~9월

을 확보해주고 대기와 바다에 축적된 해소해주는 환경 정화 역할도 한다. 이런 로 태풍은 원자령과 비교되다 입시적! 너지가 포방하며 재안이지마 에너지를 해 사용하면 귀중한 자원이 될 수 있다 태풍 재해를 중이기 위하 중요하 방 풍의 영향력에 대해 국민들과 잘 소통한 이다. 현재의 기술력으로는 기간이 김 로 태풍 예보의 정확도가 떨어진다 484 규 예보 오차는 200km 미만이지만 5위 예보 오차는 500km가 넘는다. 그렇지만 범위가 큰 5일 이상의 예보라 할지라도 유모에 대해서 화이한 수 있기 때문에 대비함 수 있는 정보로서의 가치는 매우 태풍예보이 정화도는 미국 입보 유

2만1164

2012년 09월 26일 수요일 A31면 오피니?

은 기상 선진국도 우리와 별반 다르지 않다. 갈치 어획량 추이(단위:

Two sides of typhoon

Positive effects

- reserving water resources
- improving atmospheric and
- hydrological environment

국민일보

2012년 08월 08일 수요일 003면 종합

야속한 태풍 하이쿠이?

불볕 식혀주길 기대했는데… 오키나와서 中 쪽으로 틀어 주말쯤 더위는 한풀 꺾일 듯

입추이자 말복인 7일에도 폭염의 기 세가 이어졌다.

서울은 지난 1일부터 9일 연속 낮 기온 35도 이상의 폭염이 이어졌으며 밤 사이 최저기온은 26.6도로 11일째 열대야를 기록했다. 기상청에 따르면 7일 낮 기온은 김해 37도, 전주 36. 8도, 정읍 36.5도, 원주 35.7도, 충주 35.5도, 수원 35.2도, 밀양 35.2도 등 내륙지방을 중심으로 대부분 35도를 넘었다.

기상청은 현재 일본 오키나와 근처 해상에 있는 제11호 태풍 '하이쿠이 (HAIKUI)'가 이번 주말 우리나라 면서 폭염이 이는 7일 오후 3시 기준 중심기업 970헥토파스칼(hPa)에 최대풍속 초 속 36m, 강풍반경 300km의 중형 태 풍이다. 하이쿠이는 8일 오후 중국 심 하이에 상륙한 뒤 이틀 동안 육상에 머무르면서 세력이 크게 약화될 것으 로 전망된다. 기상청은 하이쿠이의 간접적인 영향을 받아 11일 전후 제 주도와 남해안을 중심으로 비가 내리 겠다고 예보했다. 중부지방은 구름이 많은 가운데 곳곳에 소나기가 올 것 으로 전망했다.

기상청은 현재 절정의 세력을 유지 하는 북태평양 고기압도 10일부터 점 차 약해져 주말부터는 낮 최고기온 30도 안팎의 평년 기온을 되찾을 것 으로 내다봤다

기상청 관계자는 "태풍이 중국에 상륙한 후 진로와 강도에 따라 비가 오 는 시기와 양이 매우 유동적일 것 같 다"며 "앞으로 발표되는 기상정보를 참고해 달라"고 말했다. 이사야기지

東亞日報

2012년 09월 17일 월요일 B03면 경제 금융^{tr. 하이쿠}

태풍이 제주연안에 갈치떼 몰고 왔네!

하루 거래량 70~80t '풍어' 마트 매출서 고등어 제쳐

평균 20~30t 수준이었다. 하지만 지난달 말 태풍이 이 지역을 통과한 이후에는 일일 거래량이 70~80t으

다. 이는 한 달 전 가격 12만7084원 에 비해서도 5.6% 떨어진 것이다. 롯데마트에서는 지난해 6월 이후

태풍 '볼라벤'과

Typhoon "Bolaven" brought a herd of hairtails!

이후 제주 연안의 길 어 한때 '다이지카카카카 기포시께 지 낳았던 길

으로나타났

16일 유통합계에 떠

14일 현재 12만 원으로 지난해 같은 제주 성산포와 제주, 모슬포, 서귀 포 수협에서 거래된 갈치 양은 하루 시기의 13만5238원보다 11.3% 싸

게 지켜보고 있다"고 말했다.

- Make enrich planktons being prey of fishes

전성철 기자 dawn@donga.com

Typhoon 'Kanoon''also gave us presents

- Clear sky and relieving drought

Objectives

 Synthetically estimate the socioeconomic impacts of typhoon by considering both of positive and negative effects.

Data: Typhoon

< Typhoon Period >

TCID	Typhoon Name	Period	
0205	RAMMASUN	2002.7.4-6	
0215	RUSA	2002.8.30-9.1	< Typhoon Track >
0306	SOUDELOR	2003.6.18-19	
0314	MAEMI	2003.9.12-13	4511
0407	MINDULLE	2004.7.2-4	401
0415	MEGI	2004.8.17-19	35N
0418	SONGDA	2004.9.6-8	30N-
0514	NABI	2005.9.6-7	25N
0610	WUKONG	2006.8.18-19	
0613	SHANSHAN	2006.9.17-18	
0704	MAN-YI	2007.7.14-15	0308205 1104 0014 5N 0704
0711	NARI	2007.9.15-16	EQ 100E 105E 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E 160E 165E 170E 175E
0807	KALMAEGI	2008.7.19-20	
1004	DIANMU	2010.8.10-11	
1007	KOMPASU	2010.9.1-2	
1009	MALOU	2010.9.6-7	
1109	MUIFA	2011.8.6-8	

Evaluation Parts

17 typhoons for the recent 10 years (2002-2011)

Water Resources

Reserve water resources for agriculture/Industry use

Data : total mean precipitation over the whole country during the influence of each typhoon (source : KMA)

Air Quality

Improve air quality by strong wind and washout effect

Data : daily average concentration of four major pollutants(PM₁₀,SO₂,NO_x,CO) in South Korea

(source : National Institute of Environmental Research)

Harmful Algal Bloom (HAB)

Prevent HAB by mixing warm surface with cold lower ocean water during the passage of the typhoon

Data : annual statistics of HAB occurrence and its impacts to fisheries (source: National Fisheries Research and Development Institute)

Water Resource(1)

< Total annual precipitation over the river basin in Korea (1998-2008) >

Rainfall from typhoon can contribute to reserving national water resources and alleviating autumn drought a fter summer rainy season, Changma in Korea.

What constitutes drought alleviation? Palmer Drought Severity Index (Palmer 1965) $PDSI \leq -4.0$ extreme $-4.0 \le PDSI \le -3.0$ severe $-3.0 < PDSI \le -2.0$ moderate $-2.0 \le PDSI \le -1.0$ mild $-1.0 \le PDSI \le -0.5$ incipient $PDSI \ge -0.5$ normal or wet conditions PDSI is calculated monthly at each state climate division An alleviated drought event (ADE) is defined here as: initial PDSI < -2.0 (moderate drought or worse) increasing by +1.0 or more (one or more categories) over the course of one month

Percentage of droughts ended by tropical storms or hurricanes in SE U.S. (Maxwell et al. 2012)

Note: they use a PDSI change to > -0.5 (near normal).

Water Resource(2)

Air Quality(1)

< Types of typhoon track >

07/05 07/06 07/07 07/08 07/09 07/10 07/11 07/12 07/13 07/14 Date(mm/dd, '06yr)

Air Quality(2)

Equation

(particle matters) Mean decreasing amount in area of South Korea × <u>Total area of South Korea</u> × PBL height × Social marginal cost per unit mass of the particle pollutants

 $99,827 \times 10^{6} \text{ m}^{2} \times 10^{3} \text{ m} \times 24.4 \text{ US}/\text{kg}$

(gaseous matters) Apply the above calculation after transforming concentration of gaseous pollutants to the one of the particle pollutants

 \triangleright Concentration of particle matters (µg/m3) = Concentration of gaseous matters (ppb, µl/m3)

× Molecular weight (g) ÷ Volume (l) of 1 mol gas in standard state (0°C, 1 atm)

Particle pollutants(PM₁₀)

Air Quality(3)

Air Quality(4)

Result

Difference of total mean concentration for each pollutants between before and during the typhoon influence

1617.6

U.S. dollars

llion

	Тур	hoon	Difference of concent	Economic value (Million dollar)	
	Before	During	ration		
SO ₂ (pbb)	4.6	4.0	0.6	24.8	
NO ₂ (pbb)	21.2	16.8	4.4	119.8	
CO (ppb)	497.6	432.4	65.2	899.9	
PM ₁₀ (ug/mႆ)	45.0	31.8	13.2	573.1	

Harmful Algal Bloom(HAB)(1)

< Relationship between the HAB areas and typhoon influence >

(source: National Fisheries Research and Development Institute ,2009)

The HAB is effectively removed by strong wind and precipitation from the typhoon, which mixes seawater at surface with ones in lower layer.

Harmful Algal Bloom(HAB)(2)

Result

Regarding annual mean damage of HAB in each year as the prevention/s uppression effect of typhoon

Year	Number of Case	Damage (Million dollar)	Control cost (Million dollar)	Cause for the Disappearance of H ABs
2002	13	4.7	0.34	Typhoon "RUSA"
2003	12	20.5	1.71	Typhoon "MEAMI"
2004	6	0.1	0.02	Typhoon "MEGI"
2005	6	1.0	0.17	Typhoon "NABI"
2006	8	0.1	0.01	Typhoon "WUKONG"
2007	18	11.1	0.61	Typhoon "NARI"
2008	25	0.0	0.0	Decrease in water temp.
2009	10	2.9		None of typhoons
2010		> million	2-	None of HABs
2011	- 2	U.S. dolla	r <u>g</u>	None of HABs

Socioeconomic Benefit

Total value of benefit : 2.4 billion U.S. dollars (2002 - 2011)

Socioeconomic Impacts: Damage vs Benefit

Future Works(1)

Effective measures for mitigation of typhoon damage

Development of valuation process of positive aspects and its application

Future Works(2)

Thank you for your attent ion.

bjkim@kma.go.kr